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DETERMINING SOFT DATA USING A
CLASSIFICATION CODE

TECHNICAL FIELD

The present disclosure relates generally to memory error
correction, and more particularly, to apparatuses and methods
for determining soft data using a classification code.

BACKGROUND

Memory devices are typically provided as internal, semi-
conductor, integrated circuits in computers or other electronic
devices. There are many different types of memory including
volatile and non-volatile memory. Volatile memory can
require power to maintain its data and includes random-ac-
cess memory (RAM), dynamic random access memory
(DRAM), and synchronous dynamic random access memory
(SDRAM), among others. Non-volatile memory can provide
persistent data by retaining stored data when not powered and
can include NAND flash memory, NOR flash memory, phase
change random access memory (PCRAM), resistive random
access memory (RRAM), and magnetic random access
memory (MRAM), among others.

Memory devices can be combined together to form a solid
state drive (SSD). An SSD can include non-volatile memory,
e.g., NAND flash memory and/or NOR flash memory, and/or
can include volatile memory, e.g., DRAM and/or SRAM,
among various other types of non-volatile and volatile
memory. Flash memory devices can include memory cells
storing information in a charge storage structure such as a
floating gate, for instance, and may be utilized as non-volatile
memory for a wide range of electronic applications.

Memory is utilized as volatile and non-volatile data storage
for a wide range of electronic applications. Non-volatile
memory may be used in, for example, personal computers,
portable memory sticks, digital cameras, cellular telephones,
portable music players such as MP3 players, movie players,
and other electronic devices. Memory cells can be arranged
into arrays, with the arrays being used in memory devices.

A hard read is a read operation to distinguish between the
multiple states to which a memory cell may be programmed.
A hard read returns hard data, e.g., a digit corresponding to
the state determined by the read operation. Soft data can be
data other than hard data. Soft data can indicate (or be used to
indicate) a confidence level regarding confidence associated
with the hard data. For example, a soft read can be used to
determine the particular voltage to which a memory cell is
charged, which can be used to characterize the reliability of
the hard data. The reliability of hard data may be less for a
memory cell charged to a particular voltage near a boundary
between two states, than for a memory cell charged to a
particular voltage near the center of a voltage range corre-
sponding to a state. Various error-correcting code schemes
can perform much better using soft data. However, soft data
determined by a soft read is slower compared to a hard read,
and communicating soft data determined by a soft read can
consume bandwidth and impact memory throughput.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic diagram of a portion of a
non-volatile memory array in accordance with a number of
embodiments of the present disclosure.

FIG. 2 is a block diagram of an apparatus in the form of a
computing system including at least one memory system in
accordance with a number of embodiments of the present
disclosure.
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FIG. 3 is a functional block diagram of an apparatus in the
form of a controller in accordance with a number of embodi-
ments of the present disclosure.

FIG. 4 is a diagram illustrating an example CC encoded
sequence in accordance with a number of embodiments of the
present disclosure.

FIG. 5 is a flow chart of a method for decoding using
classification codes in accordance with a number of embodi-
ments of the present disclosure.

DETAILED DESCRIPTION

Apparatuses and methods for determining soft data using a
classification code are provided. One example apparatus can
include a classification code (CC) decoder and outer code
decoder (corresponding to one or more codes other than the
CC) coupled to the CC decoder. The CC can be an innermost
code, and there can be one or more outer error correction
code(s) (ECC), such as a low density parity check (LDPC)
code. The CC decoder is configured to receive a CC code-
word. The CC codeword includes a piece of the outer ECC
codeword. The CC decoder is configured to determine soft
data associated with the piece of the outer ECC codeword
based, at least partially, on the corresponding CC parity dig-
its, e.g., parity bits.

According to various embodiments of the present disclo-
sure, a “classification code” is used to generate soft data based
on data obtained from a hard read from a memory, e.g., Flash
memory. The soft data generated in this manner can be used in
an iterative decoder, e.g., an LDPC decoder. The classifica-
tion code can be utilized with simple and straight forward
encoding and decoding techniques, and its use can provide
best raw bit error rate (RBER) performance in certain itera-
tion ranges, as compared to prior approaches. One advantage
of'the apparatuses and methods of the present disclosure is the
use of a classification code to generate soft data based on the
hard reads from the memory, which can be achieved using
only a small portion of the ECC overhead. The classification
code of'the present disclosure can be used in cooperation with
LDPC codes as well as any ECC whose decoder can utilize
any form of soft information.

Advantages of LDPC codes can include near Shannon
capacity performance and efficient/structural hardware
implementation. LDPC decoders utilize a “belief propaga-
tion” algorithm, which is based on the iterative exchange of
reliability information, e.g., “beliefs.” An LDPC decoder is
probabilistic in nature; therefore, it can utilize soft data. In
fact, LDPC codes can only achieve near Shannon capacity
performance in the presence of soft data, e.g., reliability
value.

However, working with soft data read from the memory
involves several challenges, including but not limited to,
obtaining the soft data via soft reads of the memory which can
require multiple reads and result in slower read time com-
pared to hard reads. Transferring soft data read from the
memory can result in lower throughput rates compared to
transferring hard read data because multiple bits are trans-
ferred instead of a single bit for the hard read case. Calculat-
ing soft read positions that will include all pages/blocks/dies
in a memory can be difficult. Therefore, it can be more effi-
cient to operate the flash device in the hard read mode as much
as possible.

FIG. 1 illustrates a schematic diagram of a portion of a
non-volatile memory array 100 in accordance with a number
of embodiments of the present disclosure. The embodiment
of FIG. 1 illustrates a NAND architecture non-volatile
memory array, e.g., NAND Flash. However, embodiments
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described herein are not limited to this example. As shown in
FIG. 1, memory array 100 includes access lines, e.g., word
lines 105-1, . .., 105-N, and intersecting data lines, e.g., local

bit lines, 107-1, 107-2, 107-3, . . ., 107-M. For ease of
addressing in the digital environment, the number of word
lines 105-1, . . ., 105-N and the number of local bit lines

107-1,107-2,107-3, . . ., 107-M can be some power of two,
e.g., 256 word lines by 4,096 bit lines.

Memory array 100 includes NAND strings 109-1, 109-2,
109-3, ..., 109-M. Each NAND string includes non-volatile
memory cells 111-1, ..., 111-N, each coupled to a respective
word line 105-1, . . ., 105-N. Each NAND string (and its
constituent memory cells) is also associated with a local bit
line 107-1, 107-2, 107-3, . . . , 107-M. The non-volatile
memory cells 111-1, ..., 111-N of each NAND string 109-1,
109-2, 109-3, . . ., 109-M are connected in series source to
drain between a source select gate (SGS), e.g., a field-effect
transistor (FET), 113, and a drain select gate (SGD), e.g.,
FET, 119. Each source select gate 113 is configured to selec-
tively couple a respective NAND string to a common source
123 responsive to a signal on source select line 117, while
each drain select gate 119 is configured to selectively couple
arespective NAND string to a respective bit line responsive to
a signal on drain select line 115.

As shown in the embodiment illustrated in FIG. 1, a source
of source select gate 113 is connected to a common source
line 123. The drain of source select gate 113 is connected to
the source of the memory cell 111-1 of the corresponding
NAND string 109-1. The drain of drain select gate 119 is
connected to bit line 107-1 of the corresponding NAND string
109-1 at drain contact 121-1. The source of drain select gate
119 is connected to the drain of the last memory cell 111-N,
e.g., a floating-gate transistor, of the corresponding NAND
string 109-1.

In a number of embodiments, construction of non-volatile
memory cells 111-1, ..., 111-N includes a source, a drain, a
charge storage structure such as a floating gate, and a control
gate. Non-volatile memory cells 111-1, . .., 111-N have their
control gates coupled to a word line, 105-1, . . ., 105-N
respectively. A “column” of the non-volatile memory cells,
111-1, ..., 111-N, make up the NAND strings 109-1, 109-2,
109-3, ..., 109-M, and are coupled to a given local bit line
107-1,107-2,107-3, . ..,107-M, respectively. A “row” of the
non-volatile memory cells are those memory cells commonly
coupled to a given word line 105-1, . . . ; 105-N. The use of the
terms “column” and “row” is not meant to imply a particular
linear, e.g., vertical and/or horizontal, orientation of the non-
volatile memory cells. A NOR array architecture can be simi-
larly laid out, except that the string of memory cells is coupled
in parallel between the select gates.

Subsets of cells coupled to a selected word line, e.g.,
105-1, . .., 105-N, can be programmed and/or read together
as a page of memory cells. A programming operation, e.g., a
write operation, can include applying a number of program
pulses, e.g., 16V-20V, to a selected word line in order to
increase the threshold voltage (Vt) of selected cells coupled to
that selected access line to a desired program voltage level
corresponding to a target, e.g., desired, state, e.g., charge
storage state.

A read operation (as used herein, a “read” operation can
refer to a program verify operation) can include sensing a
voltage and/or current change of a bit line coupled to a
selected cell in order to determine the data value of the
selected cell. The read operation can include pre-charging a
bit line and sensing the discharge when a selected cell begins
to conduct. As used herein, sensing is an act involved in
reading.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Determining, e.g., sensing, the state of a selected cell can
include providing a number of sensing signals, e.g., read
voltages, to a selected word line while providing a number of
voltages, e.g., read pass voltages, to the word lines coupled to
the unselected cells of the string sufficient to place the unse-
lected cells in a conducting state independent of the threshold
voltage of the unselected cells. The bit line corresponding to
the selected cell being read and/or verified can be sensed to
determine whether or not the selected cell conducts in
response to the particular sensing signal applied to the
selected word line. For example, the state of a selected cell
can be determined by the word line voltage at which the bit
line current reaches a particular reference current associated
with a particular state.

In a sensing operation performed on a selected memory
cell in a NAND string, the unselected memory cells of the
string are biased so as to be in a conducting state. In such a
sensing operation, the state of the selected cell can be deter-
mined based on the current and/or voltage sensed on the bit
line corresponding to the string. For instance, the state of the
selected cell can be determined based on whether the bit line
current changes by a particular amount or reaches a particular
level in a given time period.

As an example, the memory cells of an array, such as array
100 shown in FIG. 1, can be single level (memory) cells
(SLCs) or multi-level (memory) cells (MLCs). SL.Cs can be
single-bit, e.g., two-state, memory cells. That s, the cells can
be programmed to one of two states, e.g., P0 and P1, respec-
tively. In operation, a number of memory cells, such as in a
selected block, can be programmed such that they have a Vt
level corresponding to either PO or P1. As an example, state
PO can represent a stored data value such as binary “1.” State
P1 can represent a stored data value such as binary “0.”

MLCs can be two-bit, e.g., four-state, memory cells, or can
store more than two bits of data per memory cell, including
fractional bits of data per memory cell. For example, a two-bit
memory cell can be programmed to one of four states, e.g.,
PO, P1, P2, and P3, respectively. In operation, a number of
memory cells, such as in a selected block, can be programmed
such that they have a Vt level corresponding to either PO, P1,
P2, or P3. As an example, state PO can represent a stored data
value such as binary “11.” State P1 can represent a stored data
value such as binary “10.” State P2 can represent a stored data
value such as binary “00.” State P3 can represent a stored data
value such as binary “01.” However, embodiments are not
limited to these examples.

FIG. 2 is a block diagram of an apparatus in the form of a
computing system 230 including at least one memory system
234 in accordance a number of embodiments of the present
disclosure. As used herein, a memory system 234, a controller
238, or a memory device 239 might also be separately con-
sidered an “apparatus.” The memory system 234 can be a
solid state drive (SSD), for instance, and can include a host
interface 236, a controller 238, e.g., a processor and/or other
control circuitry, and a number of memory devices
239-1, ..., 239-M, e.g., solid state memory devices such as
NAND flash devices, which provide a storage volume for the
memory system 234. In a number of embodiments, the con-
troller 238, a memory device 239-1 to 239-M, and/or the host
interface 236 can be physically located on a single die or
within a single package, e.g., a managed NAND application.
Also, in a number of embodiments, a memory, ¢.g., memory
devices 239-1 to 239-M, can include a single memory device.

As illustrated in FIG. 2, the controller 234 can be coupled
to the host interface 236 and to the memory devices
239-1, .. .,239-M via one or more channels and can be used
to transfer data between the memory system 234 and a host
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232. The interface 236 can be in the form of a standardized
interface. For example, when the memory system 234 is used
for data storage in a computing system 230, the interface 236
can be a serial advanced technology attachment (SATA),
peripheral component interconnect express (PCle), or a uni-
versal serial bus (USB), among other connectors and inter-
faces. In general, however, interface 236 can provide an inter-
face for passing control, address, data, and other signals
between the memory system 234 and a host 232 having com-
patible receptors for the host interface 236.

Host 232 can be a host system such as a personal laptop
computer, a desktop computer, a digital camera, a mobile
telephone, or a memory card reader, among various other
types of hosts. Host 232 can include a system motherboard
and/or backplane and can include a number of memory access
devices, e.g., a number of processors. Host 232 can be
coupled to the host interface 236 by a communication channel
233.

The controller 238 can communicate with the memory
devices 239-1, . . ., 239-M to control data read, write, and
erase operations, among other operations. The controller 238
can include, for example, a number of components in the form
of hardware and/or firmware, e.g., one or more integrated
circuits, and/or software for controlling access to the number
of memory devices 239-1, . . ., 239-M and/or for facilitating
data transfer between the host 232 and memory devices 239-
1,...,239-M. For instance, in the example illustrated in FIG.
2, the controller 238 can include a soft data component 242
and an error code/decode component 244. However, the con-
troller 238 can include various other components not illus-
trated so as not to obscure embodiments of the present dis-
closure. Also, the components 242 and/or 244 may not be
components of controller 238 in some embodiments, e.g., the
components 242 and/or 244 can be independent components.

The soft data component 242 can be used to determine,
e.g., look-up, soft data. For example, the soft data component
242 can be used to determine soft data from a hard read. The
error code/decode component 244 can be a BCH encoder/
decoder, an LDPC encoder/decoder, a classification code
encoder/decoder, and/or other type of encoder/decoder for
instance, which can encode/decode user data transferred
between host 232 and the memory devices 239-1, ..., 239-M.
The soft data component 242 can be coupled to the error
code/decode component 244, for example, to provide soft
data thereto. Additionally, a decoder of the error code/decode
component 244 can provide soft data to another decoder of
the error code/decode component 244.

The memory devices 239-1, . . ., 239-M can include a
number of arrays of memory cells, e.g., arrays such as array
100 shown in FIG. 1. The arrays can be flash arrays with a
NAND architecture, for example. However, embodiments are
not limited to a particular type of memory array or array
architecture. The memory cells can be grouped, for instance,
into anumber of blocks including a number of physical pages.
A number of blocks can be included in a plane of memory
cells and an array can include a number of planes.

FIG. 3 is a functional block diagram of an apparatus in the
form of a controller 338 in accordance with a number of
embodiments of the present disclosure. Controller 338 can be
coupled to a memory 339, and controller 338 can include an
ECC encode/decode component 344. Controller 338 can be
equivalent to controller 238 shown as a part of computing
system 230 in FIG. 2. Although the apparatus and methods of
the present disclosure are illustrated with respect to a com-
puting system, and more particularly with respect to decoding
data read from memory, embodiments of the present disclo-
sure are not so limited and can be implemented in other
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6

manners, such as for decoding data transmitted through the
communication channel 233, etc.

Memory 339 can be a non-transitory media, and include a
number of arrays of memory cells, e.g., non-volatile memory
cells. The arrays can be Flash arrays with a NAND architec-
ture, such as array 100 shown in FIG. 1, for example. How-
ever, embodiments of the present disclosure are not limited to
a particular type of memory array or array architecture. The
methods and apparatuses of the present disclosure can also be
used or implemented with other memory cells, such as
memory cells typically used in, for example, DRAM,
PCRAM, and/or RRAM memories.

The controller 338 can communicate with the memory 339
to operate, e.g., read, write, move, program, sense, erase, the
memory cells. Thus, controller 338 can manage communica-
tions with, and the data stored in, the memory 339. The
controller 338 can have circuitry utilizing a number of inte-
grated circuits, as well as other discrete components. In a
number of embodiments, the controller 338 can be an appli-
cation specific integrated circuit (ASIC) coupled to a printed
circuit board including the host interface 108, and/or the
memory device 339. The memory 339 and/or controller 338
can include additional circuitry that is not illustrated so as not
to obscure embodiments of the present disclosure. As used
herein, the controller 338 and/or the memory 339 might also
be implemented separately and/or considered an “apparatus.”

The ECC encode/decode component 344 can include logic
configured for encoding and decoding data being transmitted
to and/or received from the memory 339. Encoding and/or
decoding of the data can be accomplished in hardware and/or
software. For example, the ECC encode/decode component
344 can receive unencoded data at an input and provide
encoded data at an output.

As illustrated in FIG. 3, the ECC encode/decode compo-
nent 344 can include a number of various types of error
code/decode components, e.g., encoder/decoder implement-
ing a particular ECC engine. The error coding components
can be configured to encode data, e.g., user data, received, for
example, from a host, e.g., 232 shown in FIG. 2, to be written
to, e.g., stored in, the memory 339. According to alternative
embodiment(s), the various types of error code/decode com-
ponents can be implemented as components of the controller
338 rather than of an ECC encode/decode component 344.

According to a number of embodiments, ECC encode/
decode component 344 can include a number of encoding
portion(s) and/or decoding portion(s). For example, ECC
encode/decode component 344 can include one or more outer
code encoder(s), e.g., an LDPC encoder 348, one or more
outer code decoders, e.g., an iterative decoder such as an
LDPC decoder 354, a CC encoder 350, and a CC decoder 352.
The ECC encode/decode component 344 can also include, for
example, an optional Bose, Chaudhuri, and Hocquenghem
(BCH) encoder 346 and BCH decoder 356. The optional
BCH encoder 346 and BCH decoder 356 can be implemented
as an outermost code encoder and decoder such that there is
one or more intermediate code encoders, e.g., the LDPC
encoder 348, and one or more intermediate code decoders,
e.g., an iterative decoder such as the LDPC decoder 354. The
optional BCH encoder 346 and BCH decoder 356 can be
implemented as separate components, or implemented as a
BCH encoder/decoder 347. LDPC encoder 348 and LDPC
decoder 354 can be implemented as separate components, or
may be implemented as components of an encoder/iterative
decoder 349. CC encoder 350 and/or a CC decoder 352 can be
implemented as separate components, or may be imple-
mented as components of a CC encoder/decoder 351.
Embodiments of the present disclosure are not limited to the
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particular quantities and/or types of code encoders/decoders
set forth above, and can include additional encoders/decod-
ers, and/or different types or ordering of encoding/decoding
than those described above.

According to various embodiments of the present disclo-
sure, a CC decoder 352 can be implemented in hardware as a
component ofa controller, or via a processor, microprocessor,
system-on-a-chip,  application-specific-integrated-circuit,
hardware logic, or other circuitry suitable for inclusion on one
or more integrated circuits providing all or portions of the
disclosed functionality. In various embodiments, the CC
decoder 352 can be designable and/or manufacturable
according to a variety of techniques, including a program-
mable technique such as a field or mask programmable gate
array integrated circuit, a semi-custom technique such as a
wholly or partially cell-based integrated circuit, a technique
such as a specialized integrated circuit, a combination
thereof, or another technique compatible with design and/or
manufacturing of integrated circuits.

User data can be first encoded using the optional BCH
encoder 346, which can be further encoded using the LDPC
encoder 348, which can be further encoded using the CC
encoder 350. As such, the LDPC code is an inner code to the
BCH code, and the CC is an inner code to the LDPC code.
According to various embodiments, the BCH encoder 346
and/or BCH decoder 356 can be optionally omitted, as indi-
cated in FIG. 3 by the dashed outlines.

According to various embodiments of the present disclo-
sure, the ECC encode/decode component 344 can selectably
implement an all LDPC ECC scheme or a concatenated ECC
scheme which has an inner LDPC code and an outer BCH
code. In the concatenated ECC scheme, LDPC decoder can
run for 1 or 2 iterations, for example. The residual errors after
the 1 or 2 iterations can be corrected by component(s) imple-
menting, for example, the outer BCH code.

A precision rich LDPC decoder can be used such that the
LDPC decoder can be controlled to a desired quantity of
iterations. The all LDPC ECC scheme can support higher
RBER performance compared to the concatenated ECC
scheme, e.g., concatenation of an LDPC code with an outer/
inner code, in both hard and soft modes for certain applica-
tions provided that it can run as many iterations as needed.
The all LDPC ECC scheme can provide a variable throughput
rate, depending on the number of LDPC decoder iterations
and the available hardware resources. However, the all LDPC
ECC scheme can require more decoder iterations to reach a
same RBER performance compared to the concatenated ECC
scheme, and utilizes a more complex ECC decode compo-
nent, e.g., LDPC decoder 354. Higher decoder iterations
translate to higher decoder power.

The concatenated ECC scheme, for instance with an LDPC
decoder implementing 1 or 2 iterations, can be implemented
with a relatively less complex ECC encode/decode compo-
nent 344, can require fewer iterations, can use less power than
the all LDPC ECC scheme, and can provide sustained
throughput (for some applications). However, the concat-
enated ECC scheme does not provide as high a RBER per-
formance compared to the all LDPC ECC scheme at RBER
regions corresponding to end of life RBER after cycling and
retention effects on Flash memory, for example.

According to some embodiments, for applications limited
to 1 or 2 iterations of an LDPC decoder, e.g., for power and
hardware constraints, the concatenated ECC scheme per-
forms better than the all LDPC ECC scheme, and for appli-
cations that are not limited to 1 or 2 iterations of an LDPC
decoder, the all LDPC ECC scheme performs better than the
concatenated ECC scheme.
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According to various embodiments of the present disclo-
sure, soft data determined based on a hard read of the memory
is provided to the LDPC decoder. The all LDPC ECC scheme
and the concatenated ECC scheme in a hard read mode can
both suffer from slower decoder convergence, which trans-
lates into higher number of decoder iterations. For a given
RBER, the average iteration count of the LDPC decoder will
be less in the presence of soft data. The soft data can enable
the LDPC decoder to differentiate between those digits of
data, e.g., bits, determined to have high reliability and those
digits of data determined to have low reliability, which can
translate into faster correction of those digits of data deter-
mined to have low reliability due to the probabilistic nature of
the LDPC decoder. An LDPC decoder using soft data distin-
guishing between reliable digits of data and unreliable digits
of data can provide better RBER performance and faster
LDPC decoder convergence, e.g., less number of average
LDPC decoder iterations.

According to various embodiments of the present disclo-
sure, a portion of the ECC overhead is used for a “classifica-
tion code” (CC) comprising CC parity digits. The CC parity
digits can be used to generate soft data based on data obtained
by a hard read from the memory. The generated soft data can
be used in the LDPC decoder to improve the LDPC decoder
performance. According to some embodiments, the quality,
e.g., granularity, of the soft data can be based on the amount
of ECC overhead budget that is allocated to the classification
code. Even coarse soft data can lead to improved RBER
results out of the LDPC decoder at certain iteration numbers.
Therefore, the CC of the present disclosure can be imple-
mented using relatively little ECC overhead to achieve
improved LDPC decoder results.

According to various embodiments of the present disclo-
sure (and referring to FIG. 3), in the write path, CC encoder
350 can receive an LDPC codeword, e.g., LDPC encoded
sequence, provided by the LDPC encoder 348. The LDPC
codeword can be divided into a certain number of smaller
pieces that correspond to the user data for CC codeword. The
CC encoder 350 can add CC parity digits to each piece of the
LDPC encoded sequence. A piece of LDPC codeword with
appended CC parity digits is a CC codeword. In a single
LDPC codeword there can be several CC codewords. The CC
codewords corresponding to an LDPC codeword is a CC
encoded sequence. Alternatively stated, a CC encoded
sequence can comprise a number of CC codewords, each CC
codeword formed from a piece of an LDPC codeword, as is
described further with respect to FIG. 4.

The CC encoder 350 output, e.g., CC codeword(s), can be
written to memory 339. In other words, the CC code is an
inner code to the LDPC code. As is discussed in more detail
below, the CC encoding can be systematic, such that the CC
encoder 352 generates a CC codeword comprising a number
of CC parity digits that can be appended to pieces of the
LDPC codeword. As used herein, a “codeword” refers to a
sequence of digits of data that can include user data, e.g.,
input data, and parity digits of the respective code, for
example.

In the decode path, the CC decoder 352 can receive data,
such as data obtained from the memory 339 by a hard read.
The data received by the CC decoder 352 can be a CC
encoded sequence comprising a number of CC codewords.
The CC encoded sequence received by the CC decoder 352
may, or may not, be identical to the CC encoded sequence
stored in the memory 339, depending on whether digit errors
have occurred or not. That is, a CC codeword received by the
CC decoder 352 may, or may not, be identical to a corre-
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sponding CC codeword written to the memory 339 due to
possible errors in one or more digits.

The CC decoder 352 can generate soft data associated with
the respective pieces of the LDPC codeword based on the
capabilities associated with the CC constraints. Pieces of the
LDPC codeword and the associated soft data can be provided
to the LDPC decoder 354. According to various embodi-
ments, the CC decoder 352 does not do any correction, e.g.,to
the LDPC codeword pieces (of the CC codewords received
from the memory). That is, the RBER at the output of CC
decoder 352 is the same as the RBER from the memory.

According to some embodiments, the LDPC encoder 348
can receive user data as input, and output an LDPC codeword
to the CC encoder 350. Optionally, a BCH encoder 346 can
receive user data as input and output a BCH codeword to the
LDPC encoder 348, e.g., as input to the LDPC encoder 348.
The LDPC encoder 348 can receive the BCH codeword and
generate the LDPC codeword therefrom. As such, the LDPC
code is an inner code to the BCH code.

According to some embodiments, the LDPC decoder 354
can receive one or more pieces comprising the LDPC code-
word and soft data associated with each piece of LDPC code-
word from the CC decoder 352, and output user data deter-
mined from the LDPC codeword and soft data. The soft data
associated with multiple CC codewords corresponding to an
LDPC codeword can be grouped together and passed to the
LDPC decoder 354, which decodes the LDPC codeword
using the aggregated soft data.

Optionally, the LDPC decoder 354 can receive the one or
more pieces comprising the LDPC codeword and soft data
associated with respective pieces of LDPC codeword from
the CC decoder 352, and output a BCH codeword to the BCH
decoder 356. The BCH decoder 356 can receive the BCH
codeword as input and output user data. According to some
embodiments, the LDPC decoder 354 can provide reliability
data to the CC decoder 352 via a feedback path 358, as is
discussed further below.

According to various embodiments, the CC decoder 352
can be configured to associate a respective reliability value
with various portions of the piece of the LDPC codeword,
e.g., with digit(s) of the respective piece of the LDPC code-
word. The reliability value can be, for example, a log-likeli-
hood ratio (LLR). The CC decoder 352 is configured to pro-
vide the reliability value for the portions of the piece of the
LDPC codeword to the LDPC decoder (along with the piece
of'the LDPC codeword). According to various embodiments,
a reliability value can be one of three values: one value cor-
responding to uncertain reliability, another value correspond-
ing to strong reliability, and a third value corresponding to
weak reliability. According to some embodiments, the reli-
ability value can be further adjusted from one of the above-
mentioned three values based, at least partially, on other soft
data associated with the particular digit.

FIG. 4 is a diagram illustrating an example CC encoded
sequence in accordance with a number of embodiments of the
present disclosure. The CC encoded sequence 460 is formed
from the LDPC codeword by inserting a number of CC parity
digits 469 therein, each CC codeword 468 is formed from a
piece of the LDPC codeword 467 and associated CC parity
digits 469. The LDPC codeword can include user data 462,
LDPC parity digits 466, and/or optional BCH parity digits
464. Therefore, the CC encoded sequence 460 can include
user data 462, user data digits 462, LDPC parity digits 466,
optional BCH parity digits 464, and CC parity digits 469. As
such, the CC encoded sequence 460 is a concatenated code-
word. According to some embodiments, the CC encoded
sequence 460 includes a number of CC codewords 468, and
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10
each CC codeword 468 is comprised of a piece of the LDPC
codeword 467 and CC parity digits 469 associated with the
piece of the LDPC codeword 467.

As an example, a CC encoded sequence 460 can be com-
prised of an LDPC codeword along with a number of CC
parity digits 469. The LDPC codeword can have a size, for
instance, of 16,000 digits, e.g., bits. Therefore, in this
example, the CC encoded sequence 460 size is greater than
16,000 digits since the CC encoded sequence 460 includes a
number of CC parity digits 469 in addition to the 16,000 digits
of'the LDPC codeword. LDPC code user data is comprised of
the user data from the host in addition to the optional BCH
code parity bits.

The CC encoded sequence 460 can be comprised of a
number of CC codewords 468. FIG. 4 shows the CC encoded
sequence 460 including 100 CC codewords 468. The piece of
the LDPC codeword 467 of a CC codeword 468 can include
anumber of portions 470, e.g., “chunks.” The CC parity digits
469 can be appended to the number of portions 470. FIG. 4
shows CC codeword 468 having 8 portions 470. That is, the
piece of the LDPC codeword 467 of which the CC codeword
is comprised, can include multiple portions.

Assuming the example LDPC codeword size is 16,000
digits, each portion 470 is therefore comprised of 20 digits,
and each CC codeword 468 includes a piece of the LDPC
codeword 467 having 8x20=160 digits plus CC parity digits
469 (the quantity depends on CC code rate) appended thereto.
However, the piece of the LDPC codeword 467, CC codeword
468, CC parity digits 469, and/or portions 470 are not limited
to the quantity of digits described in this example, and each
may be comprised of more, or fewer, digits than described in
this example. Each portion 470, e.g., 20 bits in the example, is
a portion of the piece of the LDPC codeword 460, and each
portion 470 is also a C1 codeword (discussed further below).

According to various embodiments of the present disclo-
sure, the CC is a tensor product of an algebraic code (“C17)
and a binary algebraic code (“C2”). C1 can be any detection
code. According to various embodiments, C1 is comprised of
aparity check code corresponding to each C1 codeword, e.g.,
a single-digit parity check code corresponding to each C1
codeword. For example, a C1 digit can be set to a “1” to
indicate one of an even or odd parity for the digits of the C1
codeword. According to some embodiments, C1 can be com-
puted as the least significant digit of an addition of all the
digits of a portion 470. Assuming the piece of the LDPC
codeword 467 of a CC codeword 468 includes 8 portions,
with a C1 computed for each chunk, results in an 8 digit
vector. As such, C1 can be used to detect an odd number of
digit errors in a portion, e.g., a portion 470, of the piece of the
LDPC codeword 467. Conversely, C1 cannot be used to
detect an even number of digit errors in a portion of the piece
of'the LDPC codeword 460, e.g., in a portion 470.

C2 can be any correction code. For example, C2 can be a
binary algebraic code such as a Hamming code. However, C2
is not limited to a Hamming code implementation. C2 can be
used to identify “t” errors and detect “t+1” errors. That is, C2
can be used to directly identify “t” portions 470 of a CC
codeword 468 that are in error, and can be used to detect that
“t+1” portions 470 of a CC codeword 468 are in error (but
cannot identify which portions 470 are in error). If there are
more than “t+1” errors, the CC code cannot correctly detect
the portions 470 that are in error. In this case, portions 470 can
be mis-identified as being in error and/or not being in error. As
a result, some bits may be assigned improper reliability val-
ues (as discussed further below).

The tensor product of C1 and C2 can be further illustrated
by an example. Assume C1 is a rate 4/5 single parity code and
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the C2 is rate 4/7 Hamming code. Parity check matrices of C1,
C2, and the tensor product of H(C1) and H(C2) are given as
follows:

H(C) = [11111]

1101010
1011001

H(C2) =

1110100]

H(TPC) = TP(H(C1), H(C2)]

11111 =11111— 11111 - 00000 — 11111 — 00000 — 00000
11111 -11111-00000— 11111 —00000— 11111 —00000
11111 -00000— 11111 —11111—00000— 00000 — 11111

H(C1) is 1x5 matrix, H(C2) is 3x7 matrix, and the resultant
H(TPC) is 3x35 matrix. Thus, the resultant code rate is 32/35.

To determine the tensor product, H(C1) is multiplied, e.g.,
by matrix multiplication, by each entry of H(C2). For
instance, the first 5 entries of the first row of H(TPC) are
computed by multiplying the H(C1) by H(C2)(1,1) whichis a
1, for example. Similarly, the last 5 bits of the second row of
H(TPC) are computed by multiplying H(C1) by H(C2)
(2,7)=0, for example. The resultant code based on the tensor
product of C1 (detection code) and C2 (correction code) is a
“detection code.”

The CC encoder, e.g., 350 in FIG. 3, generates a CC code-
word 468, which is written to the memory, e.g., 339 in FIG. 3.
The CC is a systematic code. Therefore, encoding involves
generating the parity digits of the CC 469. This is a linear
operation involving binary additions. Given that the CC is the
innermost code, the input to the CC encoder, e.g., 350 in FIG.
3, is the LDPC codeword, e.g., LDPC encoded bit sequence.
The CC encoder takes this input sequence and appends the
CC parity digits thereto. The resultant CC codeword is then
written to the memory, e.g., by a controller such as 238 shown
in FIG. 2.

The following discussion is an example that illustrates
generating the CC codeword. The code rate for this example
is 32/35, so each 32 bits of data input to the CC encoder is
mapped into a 35 bit CC codeword, which includes 3 parity
digits. In the following example, the 32 bit input to the CC
encoder is assumed as follows:

U=[U1U2...U32]. Thenthe CC codeword (with the 3 parity
digits of the CC appended) is of the form:

U1 U6 Ul1 Ul6 U21 U2s U29
U2 U7 U12 U117 U22 U26 U30
U3 U8 U13 U18 U23 U227 U3l
U4 U9 U14 U19 U24 U28 U32
Us U10 U1s U20 P1 P2 P3
S1 S2 S3 S4 S5 S6 S7

P1, P2, and P3 are the parity digits. The i-th “phantom syn-
drome” can be computed, for example, by adding up the 5 bits
in the i-th column, e.g., using binary addition. The terms S1,
S2, S3, and S4 can be computed as a number. The terms S5,
S6, and S7 include P1, P2, and P3. The resultant syndrome
(vector) [S1 S2 . .. S7] is a valid codeword for the 4/7
Hamming code that was used. By multiplying the phantom
syndrome with the parity check matrix of the Hamming code
S5, S6 and S7 can be determined from S1, S2, S3 and S4 as
follows (all additions are binary):

S5=S1+S2+S3;

S6=S1+S2+S4;

S7=S1+S3+S4; and
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Then S5, S6 and S7 can be used to get P1, P2 and P3 as
follows:

P1=S5+U21+U22+U23+U24;

P2=S6+U25+U26+U27+U28;

P3=87+U29+U30+U31+U32.

The syndrome (vector) [S1 S2. .. S7] can be multiplied by the
parity check matrix of C2, e.g., a Hamming code parity check
matrix, which results in another syndrome that can be used to
detect or identity portions 470 that are in error, as previously
discussed.

FIG. 5 is a flow chart of a method for decoding classifica-
tion codes in accordance with a number of embodiments of
the present disclosure. The input to CC decoder can be, for
example, data read from a memory, such as by a hard read
571. The quantity of data read at one time can, for instance,
correspond to a page of data. The CC decoder, e.g., 352 in
FIG. 3, can operate on a CC codeword of a received CC
encoded sequence, e.g., an LDPC codeword to include a
number of CC codewords. The data comprising the CC
encoded sequence can include multiple CC codewords. The
exact number of CC codewords in a given LDPC codeword
depends on CC and LDPC code codeword sizes

In this example, for each CC codeword, the decoding steps
are as follows. The CC syndrome is computed, as shown at
572, by multiplying the received CC codeword by the parity
check matrix of the classification code. A number of portions
may be in error, as shown at 573. Different results will occur
depending on the quantity of portions that are in error. That is,
results differ depending on whether there are t or less portions
in error, there are t+1 portions in error, or whether there are
more that t+1, e.g., t+2 or more, portions in error.

If “t” or less portions are in error in the received CC
codeword, the syndrome correctly identifies portions that are
in error, as indicated at 574. The portions identified to be in
error will have odd number of bits in error when C1 is a single
parity code. A reliability value corresponding to a weak reli-
ability (with proper sign) is associated with all bits in the
portions identified to be in error, and a reliability value cor-
responding to a strong reliability (with proper sign) is asso-
ciated with all bits in the other portions, e.g., not identified as
being in error, as indicated at 575. According to various
embodiments of the present disclosure, the reliability value
corresponding to the weak and/or strong reliability for a digit
of a particular cell can be adjusted, e.g., refined, tuned, etc.,
based, at least partially on, condition of the particular
memory cell, e.g., program/erase cycles, retention, the
amount of time the data has been retained, the number of read
disturbs, etc.

If “t+1” portions are in error, the syndrome detects that
“t+1” portions are in error without identifying the portions
that are in error, as indicated at 576. In this case, all bits in the
CC codeword are assigned a reliability value corresponding
to an uncertain reliability, as indicated at 577. According to
various embodiments of the present disclosure, the reliability
value corresponding to the uncertain reliability for a digit of a
particular cell can be adjusted, e.g., refined, tuned, etc., based,
at least partially on, condition of the particular memory cell,
e.g., program/erase cycles, retention, the amount of time the
data has been retained, the number of read disturbs, etc.

If more than “t+1” portions are in error, the syndrome
mis-identifies portions in error, as indicated at 578. For the
portions mis-identified to be in error, a reliability value cor-
responding to a weak reliability (with proper sign) is associ-
ated with all bits in the portions mis-identified to be in error,
as indicated at 579, and a reliability value corresponding to a
strong reliability (with proper sign) is associated with all bits
in the other portions, e.g., not identified as being in error, as
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indicated at 579. This is treated the same as the case when
there are “t” or less portions in error.

As a result of the mis-identification, some bits may be
assigned improper reliabilities. A reliability value corre-
sponding to a weak reliability is associated with bits in por-
tions mis-identified to be in error. Ignoring undetectable error
events in C1 (even number of bits in error), the reliability
value corresponding to a weak reliability might be associated
with bits that are actually correct, e.g., bits of the CC code-
word. For the remaining portions, e.g., those portions not
mis-identified as being in error, in some of these portions
there will be odd number of bits in error and a reliability value
corresponding to a strong reliability is associated with these
erroneous bits, as well as the remaining correct bits.

Association of an incorrect and/or improper reliability
value with some bits can cause some performance degrada-
tion, e.g., in the LDPC decoder. However, given that reliabil-
ity value association does not change RBER, the performance
degradation can be small, and thus tolerable in view of the
benefits associated with using soft data in the LDPC decoder.

A detailed example of CC decoder operation is described
below. After receiving the CC codeword stored in memory,
e.g., via a hard read, a 1x7 phantom syndrome is computed.
The 1x7 phantom syndrome is multiplied by the 3x7 H(C2)to
obtain a 1x3 error location matrix, which can be converted
into decimal to locate a portion that has an odd number of bit
errors. As an example consider:

U=[01011 11111 00011 11000 1010 1111 0000]
C=[0101111111 00011 1100010100 11110 00001] (bit error
indicated by a single underline and parity digits indicated by
a double underline)

Assume a bit error exists in C(25), then C' is:
C'=[010111111100011 11000 1010001110 00001]. For this
case the syndrome is [1100011], and the error locator is
[010]=2, which points to the second 5 bit portion from the
right. Given that C2 is capable of identifying t=1 portions in
error and C' had a single portion in error, CC decoder cor-
rectly identified the portion that is in error.

As another example, for the same U and C, assume an error
is made at U(7), U(8) and U(10), (3 bit errors in a single
portion causes a single portion in error) so:

C'=[01011 10011 00011 11000 10100 11110 00001].
The syndrome is [1100001] and the error locator is [110]=6,
which refers to the 67 portion from right.

For a final example, for 3 bit errors in portion 6 and 1 bit
error in portion 2, then:

C'=[01011 10011 00011 11000 10100 01110 00001],

the syndrome is [1100011], and the error locator is [010]=2.
So the error locator indicates the second portion has an odd
number of bit errors. This particular CC code is capable of
locating only one portion with odd number of biterrors. Since
this example had 2 portions in error, it corresponds to 578 and
579 in FIG. 5. In this case CC decoder mis-identified portion
61o be correct (not in error), that will result in associating high
reliabilities in the erroneous bits of portion 6.

The selection and/or design of the classification code can
be made based on the needs of the computing system and/or
memory device to which the present apparatus or method is
being implemented. The CC does not change RBER. The CC
decoder associates soft data, e.g., reliability value, with the
bits with the same sign as those read from the memory. All bits
within a portion can be treated the same. For instance, if a
portion is identified to be in error, a reliability value corre-
sponding to a weak reliability can be associated with all bits
in that portion even though only some, e.g., an odd number, of
bits may be in error. Given this, it is better to have shorter
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portions. However, shorter portions use up more ECC over-
head. For example, consider the following 2 example codes.

Code 1 has a C1 that is a 25 bit single parity code (K,N)=
(24,25) and C2 that is a 1 bit correcting 2 bit detecting Ham-
ming code (K,N)=(4,8). The CC is (K,N)=(196,200)_
Rate=0.98 (2% overhead). Code 2 has a C1 that is a 10 bit
single parity code (K,N)=(9,10) and a C2 that is a 1 bit
correcting 2 bit detecting Hamming code (K,N)=(4,8). The
CC is (K.N)=(76,80)_Rate=0.95 (5% overhead). These
examples show the trade-off between smaller portion sizes
(implying a finer soft reliability assignment) versus rate.
Given a fixed ECC budget, any extra rate taken from the ECC
budget can lead to using a higher rate LDPC code. Accord-
ingly, the resultant RBER performance can be worse.

Itcan be beneficial to have a larger “t” for C2. However, the
effect of this will be increased codeword size for the resultant
code. Consider the following 2 example cases. Code 1 has a
C1 that is a 25 bit single parity code (K,N)=(24,25) and a C2
thatis a 1 bit correcting 2 bit detecting Hamming code (K,N)=
(4,8). The CC s (K,N)=(196,200) Rate=0.98 (2% overhead).
Code 2 has a C1 that is a 25 bit single parity code (K,N)=(24,
25) and a C2 that is a 3 bit correcting 4 bit detecting Golay
code (K,N)=(12,24). The CC is (K,N)=(588,600) Rate=0.98
(2% overhead). Both example codes have same overhead
(2%). Code 1 can identify 1 portion in error and detect that 2
portions are in error per 200 bits (8 portions of 25 bits). Code
2 can identify 3 portions in error and detect that 4 portions are
in error in 600 bits (24 portions of 25 bits). Comparing these
two codes, Code 2 is pooling ECC resources and offering
them in a larger codeword. Considering the 600 bit codeword
of' Code 2 as 3 sections of 200 bits, Code 2 will perform better
only when one of the sections has 2, 3 or 4 portions in error
and total number of portions in error among 24 portions is 4
or less. Simulations show that in an example RBER region
~5E-3, both codes perform similarly, which signifies that in
the RBER region of interest, the probability of having more
than 2 portions in error among 8 portions is very low. How-
ever, depending on the RBER region of interest for various
products and technologies, pooling ECC resources of the CC
codeword can be beneficial.

Given the potential of associating incorrect reliability val-
ues to bits of portions mis-identified as being in error, selec-
tion of the reliability values corresponding to weak reliability,
uncertain reliability, and/or strong reliability can be used to
achieve good performance. For the same configuration, a
poorer selection can lead to much poorer results.

Referring again to FIG. 3, the feedback path 358 from the
LDPC decoder 354 to the CC decoder 352 can be used to
provide turbo equalization therebetween. Turbo equalization
can potentially help the CC decoder 352 operations. The CC
decoder 352 can first receive data via a hard read from the
memory, and can generate soft data for use in the LDPC
decoder 354. The LDPC decoder 354 can use this generated
soft data for error correction, for example, after running a few
iterations. Hard decisions from LDPC decoder 354 can be fed
back to the CC decoder 352 via the feedback path 358. With
the hard decisions from LDPC decoder 354, the CC decoder
352 can work with data from the hard read that potentially has
less errors in it compared to data that is read from the memory
339.

Using this new data from LDPC decoder 354, the CC
decoder 352 can re-generate the soft data and send it back to
LDPC decoder 354. The feedback from LDPC decoder 354
can be ignored and the CC decoder can generate soft data as
if no soft data exists (like the situation when the CC decoder
352 generated soft data based on the data obtained from
memory 339 via a hard read). Or, the CC decoder 352 can
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identify portions that are potentially in error. By the CC
decoder 352 identifying a portion that is in error instead of
associating a reliability value with all bits corresponding to a
same weak reliability, the CC decoder 352 can try to identify
the bit(s) that are in error (using soft data fed back from LDPC
decoder 354). For example, the lowest reliability bits can be
identified as being more likely to be in error, and a reliability
value corresponding to a weak reliability can be associated
with some bits of a portion while a reliability value corre-
sponding to a strong reliability can be associated with other
bits within a chunk.

Decoding advanced error-correction codes (ECCs), such
as low-density parity-check (LDPC) codes, can be accom-
plished using soft data such as log-likelihood ratio (LLR)
information. Confidence about a binary data value decision
can be expressed as an LLR, which is calculated as

LLR = log(%),

where P(0) is a conditional probability that a digit of a data
value, e.g., a bit, has a first value, e.g., zero, and P(1) is a
conditional probability that a digit of a data value has a second
value, e.g., one. (Note that if codewords are stored in memory,
the data value actually stored in memory is that of the code-
word.) When full confidence is attributed to a sensed state the
above formula results in positive infinity when a state repre-
senting a ‘0’ is sensed since

1
LLR = 10g(6] = log{co) = co,

and negative infinity when a state representing a “1” is sensed
since

LIR = log(%] = log(0) = —co.

The measure of confidence can be truncated to one bit, return-
ing +1 in place of positive infinity and returning -1 in place of
negative infinity responsive to a read request, for example.

One example method can include determining, using a
hard read, a state of a memory cell. Soft data is determined
based, at least partially, on the determined state. According to
a number of embodiments of the present disclosure, prob-
abilities can be pre-determined for each digit of a data value,
e.g., bit, corresponding to each state in a particular data value
arrangement based on the data values corresponding to neigh-
boring states in the particular data value arrangement. From
these pre-determined probabilities, LLRs can also be com-
puted for each digit of a data value, e.g., bit, corresponding to
each state in a particular data value arrangement based on the
data values corresponding to neighboring states in the par-
ticular data value arrangement. The data value probabilities
and/or LLRs can be stored in a data structure, such as a
look-up table (LUT). Thereafter, appropriate data value prob-
abilities and/or LLRs can be retrieved from the LUT based on,
e.g., indexed by, a hard read.

As discussed previously with respect to FIG. 5, if “t+1”
portions are in error, e.g., by the CC decoder 352 shown in
FIG. 3, the syndrome detects that “t+1” portions are in error
without identifying the portions that are in error, as indicated
at 576. According to some embodiments of the present dis-
closure, all digits, e.g., bits, in the CC codeword are assigned
a same reliability value corresponding to an uncertain reli-
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ability, as indicated at 577. According to various embodi-
ments of the present disclosure, for particular bits in the CC
codeword having t+1” portions identified as being in error, the
same reliability value corresponding to an uncertain reliabil-
ity can be adjusted respectively, e.g., refined, based, at least
partially, on soft data determined for particular digits in the
CC codeword having “t+1” portions identified to be in error.
The soft data determined for particular digits in the CC code-
word having “t+1” portions identified to be in error can be, for
example, an LLR determined using a hard read of the particu-
lar digit or an LLR determined from multiple reads of the
particular digit.

As discussed previously with respect to FIG. 5, if “t” or less
portions are in error in the received CC codeword, the syn-
drome correctly identifies portions that are in error, as indi-
cated at 574. A reliability value corresponding to a weak
reliability (with proper sign) is associated with all bits in the
portions identified to be in error, and a reliability value cor-
responding to a strong reliability (with proper sign) is asso-
ciated with all bits in the other portions, e.g., not identified as
being in error, as indicated at 575. According to various
embodiments of the present disclosure, for particular bits in
the CC codeword having “t” or less portions identified as
being in error, the associated reliability value of a particular
digit can be adjusted, e.g., refined, based, at least partially, on
soft data determined for the particular digit in the CC code-
word. The soft data determined for particular digit in the CC
codeword can be, for example, an LLR determined using a
hard read of the particular digit or an LLL.R determined from
multiple reads of the particular digit.

Although specific embodiments have been illustrated and
described herein, those of ordinary skill in the art will appre-
ciate that an arrangement calculated to achieve the same
results can be substituted for the specific embodiments
shown. This disclosure is intended to cover adaptations or
variations of various embodiments of the present disclosure.
Itis to be understood that the above description has been made
in an illustrative fashion, and not a restrictive one. Combina-
tion of the above embodiments, and other embodiments not
specifically described herein will be apparent to those of skill
in the art upon reviewing the above description. The scope of
the various embodiments of the present disclosure includes
other applications in which the above structures and methods
are used. Therefore, the scope of various embodiments of the
present disclosure should be determined with reference to the
appended claims, along with the full range of equivalents to
which such claims are entitled.

In the foregoing Detailed Description, various features are
grouped together in a single embodiment for the purpose of
streamlining the disclosure. This method of disclosure is not
to be interpreted as reflecting an intention that the disclosed
embodiments of the present disclosure have to use more fea-
tures than are expressly recited in each claim. Rather, as the
following claims reflect, inventive subject matter lies in less
than all features of a single disclosed embodiment. Thus, the
following claims are hereby incorporated into the Detailed
Description, with each claim standing on its own as a separate
embodiment.

What is claimed is:

1. An apparatus, comprising:

a classification code (CC) decoder; and

an outer code decoder coupled to the CC decoder,

wherein the CC decoder is configured to:

receive a CC codeword, the CC codeword including a

piece of an outer code codeword and a corresponding
CC parity digits; and
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determine soft data associated with the piece of outer
code codeword, at least partially, by using the corre-
sponding CC parity digits to associate a reliability
value with at least a piece of the outer code codeword.

2. The apparatus of claim 1, wherein the outer code decoder
is a soft input decoder.

3. The apparatus of claim 1, wherein the outer code decoder
is an iterative decoder.

4. The apparatus of claim 3, wherein the iterative decoder
is a low-density parity-check (LDPC) decoder, and the piece
of the outer code codeword is piece of an LDPC codeword.

5. The apparatus of claim 1, further comprising a memory
coupled to the CC decoder, and wherein the CC decoder is
configured to receive the CC codeword via a hard read of the
memory.

6. The apparatus of claim 1, wherein the reliability value
includes a log-likelihood ratio (LLR) determined, at least
partially, for digits of the CC codeword determined using a
hard read.

7. The apparatus of claim 1, wherein the soft data is a
reliability value associated with a portion of the piece of the
outer code codeword.

8. The apparatus of claim 7, wherein the CC decoder is
configured to associate a respective reliability value with each
digit of the portion of the piece of the outer code codeword.

9. The apparatus of claim 7, wherein the CC decoder is
configured to provide the reliability value for the portion of
the piece of the outer code codeword to the outer code
decoder.

10. The apparatus of claim 9, wherein outer code decoder is
configured to utilize the reliability value in decoding the outer
code codeword.

11. The apparatus of claim 10, wherein the reliability value
is one of three values, a respective value corresponding to one
of uncertain reliability, strong reliability, or weak reliability.

12. The apparatus of claim 7, further comprising adjusting
the reliability value based, at least partially, on a condition of
a memory cell.

13. The apparatus of claim 1, wherein the CC is a tensor
product of two algebraic codes.

14. The apparatus of claim 1, wherein the CC is a tensor
product of a single-digit parity check code and a binary alge-
braic code.

15. The apparatus of claim 1, wherein the CC decoder and
the outer code decoder are components of a controller.

16. The apparatus of claim 1, wherein outer code decoder is
configured to feedback hard decisions to the CC decoder via
a feedback path, and the CC decoder is configured to deter-
mine soft data using the hard decisions.

17. An apparatus, comprising:

an outer code decoder;

an intermediate code decoder coupled to the outer code

decoder; and

a classification code (CC) decoder coupled to the interme-

diate code decoder,

wherein the CC decoder is configured to:

receive a CC codeword from a memory via a hard read,
the CC codeword comprising CC parity digits and
data that is composed of user data from the host and
intermediate code parity digits and outer code parity
digits;

determine soft data associated with the data by using the
CC parity digits to associate a reliability value with at
least a piece of the data; and

provide the data and the soft data to the intermediate
code decoder.
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18. The apparatus of claim 17, wherein the data is a piece of
a low-density parity-check (LDPC) codeword, and the inter-
mediate code decoder is an iterative LDPC decoder.
19. The apparatus of claim 17, wherein the CC decoder is
further configured to determine soft data associated with a
number of digits of the data based, at least in part, on the CC
parity digits.
20. The apparatus of claim 17, wherein the CC is a tensor
product of a detection code and a correction code.
21. The apparatus of claim 17, wherein the CC is a tensor
product of a single-digit parity check code (C1) and a binary
algebraic code (C2).
22. The apparatus of claim 21, wherein the CC decoder is
configured to detect an odd number of errors in at least a
portion of the data using the C1.
23. The apparatus of claim 21, wherein the CC decoder is
configured to identify t or fewer portions of the data in error
using C2.
24. The apparatus of claim 21, wherein the CC decoder is
configured to detect that t+1 portions of the data are in error
without identifying which particular t+1 portions of the data
that are in error.
25. The apparatus of claim 17, wherein the intermediate
code decoder is configured to operate for at most 2 iterations.
26. The apparatus of claim 17, wherein the intermediate
code decoder, the outer code decoder, and the CC decoder are
components of a controller.
27. A method, comprising:
receiving, to a first decoder, a first encoder codeword, the
first encoder codeword including a piece of a second
encoder codeword and first code parity digits;

determining, via the first decoder, soft data associated with
the piece of the second encoder codeword based, at least
partially, on the first code parity digits by associating a
reliability value with at least a piece of the second
encoder codeword; and

providing the piece of the second encoder codeword and

determined soft data from the first decoder to a second
decoder.

28. The method of claim 27, wherein the second decoder is
an iterative decoder.

29. The method of claim 28, further comprising determin-
ing, via the second decoder operating for at most two itera-
tions, data based, at least partially, on the piece of the second
encoder codeword and the determined soft data.

30. The method of claim 27, wherein determining the soft
data includes determining a reliability value associated with a
digit of the piece of the second encoder codeword.

31. The method of claim 27, further comprising determin-
ing, via the first decoder, a parity check code (C1) and a binary
algebraic code (C2) from the first code parity digits, wherein
the first code parity digits are computed from tensor product
of C1 and C2.

32. The method of claim 27, wherein the first decoder is a
classification code (CC) decoder, the first code parity digits
are CC parity digits, the second decoder is a low-density
parity-check (LDPC) decoder, and the piece of the second
encoder codeword is a piece of an LDPC codeword.

33. The method of claim 27, wherein:

receiving the first encoder codeword to the first decoder

includes:
receiving, to a classification code (CC) decoder, a CC
codeword; and

wherein determining soft data via the first decoder

includes:
determining, via the CC decoder, CC parity digits and a
piece of an outer codeword from the CC codeword;
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the method further comprising:

identifying t portions of the piece of the outer codeword in
error based on the CC parity digits where there is t or
fewer portions of the piece of the outer codeword in
error; and

detecting t+1 portions of the piece of the outer codeword in

error based on the CC parity digits where there is t+1
portions of the piece of the outer codeword in error.

34. The method of claim 33, further comprising providing,
by the CC decoder, pieces of the outer codeword and soft data
regarding identified and detected portions of the piece of the
outer codeword to an iterative decoder, wherein the iterative
decoder is a low-density parity-check (LDPC) decoder, and
the pieces of the outer codeword is an LDPC codeword.

35. The method of claim 34, wherein identifying t portions
of'the outer codeword in error includes associating a reliabil-
ity value corresponding to a weak reliability to all digits in the
identified t portions of the outer codeword.

36. The method of claim 34, wherein identifying t portions
of the piece of the outer codeword in error includes associat-
ing a reliability value corresponding to a strong reliability to
all digits in other than the identified t portions of the piece of
the outer codeword.

20

37. The method of claim 34, wherein identifying detecting
t+1 portions of the outer codeword in error includes associ-
ating a reliability value corresponding to an uncertain reli-
ability to all digits in the piece of the outer codeword.

38. The method of claim 33, further comprising:

determining a reliability value corresponding to a particu-

lar digit in the piece of the outer codeword based, at least
partially, on the CC parity digits; and

adjusting the reliability value corresponding to the particu-

lar digit in the piece of the outer codeword based, at least
partially, on soft data determined from reading the par-
ticular digit in the piece of the outer codeword.

39. The method of claim 38, wherein the soft data deter-
mined for the particular digit in the piece of the outer code-

15 word is an LLR determined using a hard read for the particu-

lar digit in the piece of the outer codeword.

40. The method of claim 33, wherein determining the CC
parity digits include computing a CC syndrome as the product
of'the received CC codeword and a parity check matrix of the

20 CC parity digits.

41. The method of claim 33, wherein the received CC
codeword is obtained from a memory via a hard read.
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